1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
//! A priority queue implemented with a binary heap.
//!
//! Insertion and popping the largest element have *O*(log(*n*)) time complexity.
//! Checking the largest element is *O*(1). Converting a vector to a binary heap
//! can be done in-place, and has *O*(*n*) complexity. A binary heap can also be
//! converted to a sorted vector in-place, allowing it to be used for an *O*(*n* \* log(*n*))
//! in-place heapsort.
//!
//! # Examples
//!
//! This is a larger example that implements [Dijkstra's algorithm][dijkstra]
//! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph].
//! It shows how to use [`BinaryHeap`] with custom types.
//!
//! [dijkstra]: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
//! [sssp]: https://en.wikipedia.org/wiki/Shortest_path_problem
//! [dir_graph]: https://en.wikipedia.org/wiki/Directed_graph
//!
//! ```
//! use std::cmp::Ordering;
//! use std::collections::BinaryHeap;
//!
//! #[derive(Copy, Clone, Eq, PartialEq)]
//! struct State {
//!     cost: usize,
//!     position: usize,
//! }
//!
//! // The priority queue depends on `Ord`.
//! // Explicitly implement the trait so the queue becomes a min-heap
//! // instead of a max-heap.
//! impl Ord for State {
//!     fn cmp(&self, other: &Self) -> Ordering {
//!         // Notice that the we flip the ordering on costs.
//!         // In case of a tie we compare positions - this step is necessary
//!         // to make implementations of `PartialEq` and `Ord` consistent.
//!         other.cost.cmp(&self.cost)
//!             .then_with(|| self.position.cmp(&other.position))
//!     }
//! }
//!
//! // `PartialOrd` needs to be implemented as well.
//! impl PartialOrd for State {
//!     fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
//!         Some(self.cmp(other))
//!     }
//! }
//!
//! // Each node is represented as a `usize`, for a shorter implementation.
//! struct Edge {
//!     node: usize,
//!     cost: usize,
//! }
//!
//! // Dijkstra's shortest path algorithm.
//!
//! // Start at `start` and use `dist` to track the current shortest distance
//! // to each node. This implementation isn't memory-efficient as it may leave duplicate
//! // nodes in the queue. It also uses `usize::MAX` as a sentinel value,
//! // for a simpler implementation.
//! fn shortest_path(adj_list: &Vec<Vec<Edge>>, start: usize, goal: usize) -> Option<usize> {
//!     // dist[node] = current shortest distance from `start` to `node`
//!     let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect();
//!
//!     let mut heap = BinaryHeap::new();
//!
//!     // We're at `start`, with a zero cost
//!     dist[start] = 0;
//!     heap.push(State { cost: 0, position: start });
//!
//!     // Examine the frontier with lower cost nodes first (min-heap)
//!     while let Some(State { cost, position }) = heap.pop() {
//!         // Alternatively we could have continued to find all shortest paths
//!         if position == goal { return Some(cost); }
//!
//!         // Important as we may have already found a better way
//!         if cost > dist[position] { continue; }
//!
//!         // For each node we can reach, see if we can find a way with
//!         // a lower cost going through this node
//!         for edge in &adj_list[position] {
//!             let next = State { cost: cost + edge.cost, position: edge.node };
//!
//!             // If so, add it to the frontier and continue
//!             if next.cost < dist[next.position] {
//!                 heap.push(next);
//!                 // Relaxation, we have now found a better way
//!                 dist[next.position] = next.cost;
//!             }
//!         }
//!     }
//!
//!     // Goal not reachable
//!     None
//! }
//!
//! fn main() {
//!     // This is the directed graph we're going to use.
//!     // The node numbers correspond to the different states,
//!     // and the edge weights symbolize the cost of moving
//!     // from one node to another.
//!     // Note that the edges are one-way.
//!     //
//!     //                  7
//!     //          +-----------------+
//!     //          |                 |
//!     //          v   1        2    |  2
//!     //          0 -----> 1 -----> 3 ---> 4
//!     //          |        ^        ^      ^
//!     //          |        | 1      |      |
//!     //          |        |        | 3    | 1
//!     //          +------> 2 -------+      |
//!     //           10      |               |
//!     //                   +---------------+
//!     //
//!     // The graph is represented as an adjacency list where each index,
//!     // corresponding to a node value, has a list of outgoing edges.
//!     // Chosen for its efficiency.
//!     let graph = vec![
//!         // Node 0
//!         vec![Edge { node: 2, cost: 10 },
//!              Edge { node: 1, cost: 1 }],
//!         // Node 1
//!         vec![Edge { node: 3, cost: 2 }],
//!         // Node 2
//!         vec![Edge { node: 1, cost: 1 },
//!              Edge { node: 3, cost: 3 },
//!              Edge { node: 4, cost: 1 }],
//!         // Node 3
//!         vec![Edge { node: 0, cost: 7 },
//!              Edge { node: 4, cost: 2 }],
//!         // Node 4
//!         vec![]];
//!
//!     assert_eq!(shortest_path(&graph, 0, 1), Some(1));
//!     assert_eq!(shortest_path(&graph, 0, 3), Some(3));
//!     assert_eq!(shortest_path(&graph, 3, 0), Some(7));
//!     assert_eq!(shortest_path(&graph, 0, 4), Some(5));
//!     assert_eq!(shortest_path(&graph, 4, 0), None);
//! }
//! ```

#![allow(missing_docs)]
#![stable(feature = "rust1", since = "1.0.0")]

use core::fmt;
use core::iter::{FromIterator, FusedIterator, InPlaceIterable, SourceIter, TrustedLen};
use core::mem::{self, swap, ManuallyDrop};
use core::ops::{Deref, DerefMut};
use core::ptr;

use crate::slice;
use crate::vec::{self, AsIntoIter, Vec};

use super::SpecExtend;

/// A priority queue implemented with a binary heap.
///
/// This will be a max-heap.
///
/// It is a logic error for an item to be modified in such a way that the
/// item's ordering relative to any other item, as determined by the `Ord`
/// trait, changes while it is in the heap. This is normally only possible
/// through `Cell`, `RefCell`, global state, I/O, or unsafe code. The
/// behavior resulting from such a logic error is not specified, but will
/// not result in undefined behavior. This could include panics, incorrect
/// results, aborts, memory leaks, and non-termination.
///
/// # Examples
///
/// ```
/// use std::collections::BinaryHeap;
///
/// // Type inference lets us omit an explicit type signature (which
/// // would be `BinaryHeap<i32>` in this example).
/// let mut heap = BinaryHeap::new();
///
/// // We can use peek to look at the next item in the heap. In this case,
/// // there's no items in there yet so we get None.
/// assert_eq!(heap.peek(), None);
///
/// // Let's add some scores...
/// heap.push(1);
/// heap.push(5);
/// heap.push(2);
///
/// // Now peek shows the most important item in the heap.
/// assert_eq!(heap.peek(), Some(&5));
///
/// // We can check the length of a heap.
/// assert_eq!(heap.len(), 3);
///
/// // We can iterate over the items in the heap, although they are returned in
/// // a random order.
/// for x in &heap {
///     println!("{}", x);
/// }
///
/// // If we instead pop these scores, they should come back in order.
/// assert_eq!(heap.pop(), Some(5));
/// assert_eq!(heap.pop(), Some(2));
/// assert_eq!(heap.pop(), Some(1));
/// assert_eq!(heap.pop(), None);
///
/// // We can clear the heap of any remaining items.
/// heap.clear();
///
/// // The heap should now be empty.
/// assert!(heap.is_empty())
/// ```
///
/// A `BinaryHeap` with a known list of items can be initialized from an array:
///
/// ```
/// use std::collections::BinaryHeap;
///
/// let heap = BinaryHeap::from([1, 5, 2]);
/// ```
///
/// ## Min-heap
///
/// Either `std::cmp::Reverse` or a custom `Ord` implementation can be used to
/// make `BinaryHeap` a min-heap. This makes `heap.pop()` return the smallest
/// value instead of the greatest one.
///
/// ```
/// use std::collections::BinaryHeap;
/// use std::cmp::Reverse;
///
/// let mut heap = BinaryHeap::new();
///
/// // Wrap values in `Reverse`
/// heap.push(Reverse(1));
/// heap.push(Reverse(5));
/// heap.push(Reverse(2));
///
/// // If we pop these scores now, they should come back in the reverse order.
/// assert_eq!(heap.pop(), Some(Reverse(1)));
/// assert_eq!(heap.pop(), Some(Reverse(2)));
/// assert_eq!(heap.pop(), Some(Reverse(5)));
/// assert_eq!(heap.pop(), None);
/// ```
///
/// # Time complexity
///
/// | [push] | [pop]     | [peek]/[peek\_mut] |
/// |--------|-----------|--------------------|
/// | O(1)~  | *O*(log(*n*)) | *O*(1)               |
///
/// The value for `push` is an expected cost; the method documentation gives a
/// more detailed analysis.
///
/// [push]: BinaryHeap::push
/// [pop]: BinaryHeap::pop
/// [peek]: BinaryHeap::peek
/// [peek\_mut]: BinaryHeap::peek_mut
#[stable(feature = "rust1", since = "1.0.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "BinaryHeap")]
pub struct BinaryHeap<T> {
    data: Vec<T>,
}

/// Structure wrapping a mutable reference to the greatest item on a
/// `BinaryHeap`.
///
/// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See
/// its documentation for more.
///
/// [`peek_mut`]: BinaryHeap::peek_mut
#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
pub struct PeekMut<'a, T: 'a + Ord> {
    heap: &'a mut BinaryHeap<T>,
    sift: bool,
}

#[stable(feature = "collection_debug", since = "1.17.0")]
impl<T: Ord + fmt::Debug> fmt::Debug for PeekMut<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("PeekMut").field(&self.heap.data[0]).finish()
    }
}

#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
impl<T: Ord> Drop for PeekMut<'_, T> {
    fn drop(&mut self) {
        if self.sift {
            // SAFETY: PeekMut is only instantiated for non-empty heaps.
            unsafe { self.heap.sift_down(0) };
        }
    }
}

#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
impl<T: Ord> Deref for PeekMut<'_, T> {
    type Target = T;
    fn deref(&self) -> &T {
        debug_assert!(!self.heap.is_empty());
        // SAFE: PeekMut is only instantiated for non-empty heaps
        unsafe { self.heap.data.get_unchecked(0) }
    }
}

#[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
impl<T: Ord> DerefMut for PeekMut<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        debug_assert!(!self.heap.is_empty());
        self.sift = true;
        // SAFE: PeekMut is only instantiated for non-empty heaps
        unsafe { self.heap.data.get_unchecked_mut(0) }
    }
}

impl<'a, T: Ord> PeekMut<'a, T> {
    /// Removes the peeked value from the heap and returns it.
    #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")]
    pub fn pop(mut this: PeekMut<'a, T>) -> T {
        let value = this.heap.pop().unwrap();
        this.sift = false;
        value
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Clone> Clone for BinaryHeap<T> {
    fn clone(&self) -> Self {
        BinaryHeap { data: self.data.clone() }
    }

    fn clone_from(&mut self, source: &Self) {
        self.data.clone_from(&source.data);
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> Default for BinaryHeap<T> {
    /// Creates an empty `BinaryHeap<T>`.
    #[inline]
    fn default() -> BinaryHeap<T> {
        BinaryHeap::new()
    }
}

#[stable(feature = "binaryheap_debug", since = "1.4.0")]
impl<T: fmt::Debug> fmt::Debug for BinaryHeap<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_list().entries(self.iter()).finish()
    }
}

impl<T: Ord> BinaryHeap<T> {
    /// Creates an empty `BinaryHeap` as a max-heap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap = BinaryHeap::new();
    /// heap.push(4);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn new() -> BinaryHeap<T> {
        BinaryHeap { data: vec![] }
    }

    /// Creates an empty `BinaryHeap` with a specific capacity.
    /// This preallocates enough memory for `capacity` elements,
    /// so that the `BinaryHeap` does not have to be reallocated
    /// until it contains at least that many values.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap = BinaryHeap::with_capacity(10);
    /// heap.push(4);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn with_capacity(capacity: usize) -> BinaryHeap<T> {
        BinaryHeap { data: Vec::with_capacity(capacity) }
    }

    /// Returns a mutable reference to the greatest item in the binary heap, or
    /// `None` if it is empty.
    ///
    /// Note: If the `PeekMut` value is leaked, the heap may be in an
    /// inconsistent state.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap = BinaryHeap::new();
    /// assert!(heap.peek_mut().is_none());
    ///
    /// heap.push(1);
    /// heap.push(5);
    /// heap.push(2);
    /// {
    ///     let mut val = heap.peek_mut().unwrap();
    ///     *val = 0;
    /// }
    /// assert_eq!(heap.peek(), Some(&2));
    /// ```
    ///
    /// # Time complexity
    ///
    /// If the item is modified then the worst case time complexity is *O*(log(*n*)),
    /// otherwise it's *O*(1).
    #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")]
    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T>> {
        if self.is_empty() { None } else { Some(PeekMut { heap: self, sift: false }) }
    }

    /// Removes the greatest item from the binary heap and returns it, or `None` if it
    /// is empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap = BinaryHeap::from(vec![1, 3]);
    ///
    /// assert_eq!(heap.pop(), Some(3));
    /// assert_eq!(heap.pop(), Some(1));
    /// assert_eq!(heap.pop(), None);
    /// ```
    ///
    /// # Time complexity
    ///
    /// The worst case cost of `pop` on a heap containing *n* elements is *O*(log(*n*)).
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn pop(&mut self) -> Option<T> {
        self.data.pop().map(|mut item| {
            if !self.is_empty() {
                swap(&mut item, &mut self.data[0]);
                // SAFETY: !self.is_empty() means that self.len() > 0
                unsafe { self.sift_down_to_bottom(0) };
            }
            item
        })
    }

    /// Pushes an item onto the binary heap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap = BinaryHeap::new();
    /// heap.push(3);
    /// heap.push(5);
    /// heap.push(1);
    ///
    /// assert_eq!(heap.len(), 3);
    /// assert_eq!(heap.peek(), Some(&5));
    /// ```
    ///
    /// # Time complexity
    ///
    /// The expected cost of `push`, averaged over every possible ordering of
    /// the elements being pushed, and over a sufficiently large number of
    /// pushes, is *O*(1). This is the most meaningful cost metric when pushing
    /// elements that are *not* already in any sorted pattern.
    ///
    /// The time complexity degrades if elements are pushed in predominantly
    /// ascending order. In the worst case, elements are pushed in ascending
    /// sorted order and the amortized cost per push is *O*(log(*n*)) against a heap
    /// containing *n* elements.
    ///
    /// The worst case cost of a *single* call to `push` is *O*(*n*). The worst case
    /// occurs when capacity is exhausted and needs a resize. The resize cost
    /// has been amortized in the previous figures.
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn push(&mut self, item: T) {
        let old_len = self.len();
        self.data.push(item);
        // SAFETY: Since we pushed a new item it means that
        //  old_len = self.len() - 1 < self.len()
        unsafe { self.sift_up(0, old_len) };
    }

    /// Consumes the `BinaryHeap` and returns a vector in sorted
    /// (ascending) order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    ///
    /// let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]);
    /// heap.push(6);
    /// heap.push(3);
    ///
    /// let vec = heap.into_sorted_vec();
    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);
    /// ```
    #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
    pub fn into_sorted_vec(mut self) -> Vec<T> {
        let mut end = self.len();
        while end > 1 {
            end -= 1;
            // SAFETY: `end` goes from `self.len() - 1` to 1 (both included),
            //  so it's always a valid index to access.
            //  It is safe to access index 0 (i.e. `ptr`), because
            //  1 <= end < self.len(), which means self.len() >= 2.
            unsafe {
                let ptr = self.data.as_mut_ptr();
                ptr::swap(ptr, ptr.add(end));
            }
            // SAFETY: `end` goes from `self.len() - 1` to 1 (both included) so:
            //  0 < 1 <= end <= self.len() - 1 < self.len()
            //  Which means 0 < end and end < self.len().
            unsafe { self.sift_down_range(0, end) };
        }
        self.into_vec()
    }

    // The implementations of sift_up and sift_down use unsafe blocks in
    // order to move an element out of the vector (leaving behind a
    // hole), shift along the others and move the removed element back into the
    // vector at the final location of the hole.
    // The `Hole` type is used to represent this, and make sure
    // the hole is filled back at the end of its scope, even on panic.
    // Using a hole reduces the constant factor compared to using swaps,
    // which involves twice as many moves.

    /// # Safety
    ///
    /// The caller must guarantee that `pos < self.len()`.
    unsafe fn sift_up(&mut self, start: usize, pos: usize) -> usize {
        // Take out the value at `pos` and create a hole.
        // SAFETY: The caller guarantees that pos < self.len()
        let mut hole = unsafe { Hole::new(&mut self.data, pos) };

        while hole.pos() > start {
            let parent = (hole.pos() - 1) / 2;

            // SAFETY: hole.pos() > start >= 0, which means hole.pos() > 0
            //  and so hole.pos() - 1 can't underflow.
            //  This guarantees that parent < hole.pos() so
            //  it's a valid index and also != hole.pos().
            if hole.element() <= unsafe { hole.get(parent) } {
                break;
            }

            // SAFETY: Same as above
            unsafe { hole.move_to(parent) };
        }

        hole.pos()
    }

    /// Take an element at `pos` and move it down the heap,
    /// while its children are larger.
    ///
    /// # Safety
    ///
    /// The caller must guarantee that `pos < end <= self.len()`.
    unsafe fn sift_down_range(&mut self, pos: usize, end: usize) {
        // SAFETY: The caller guarantees that pos < end <= self.len().
        let mut hole = unsafe { Hole::new(&mut self.data, pos) };
        let mut child = 2 * hole.pos() + 1;

        // Loop invariant: child == 2 * hole.pos() + 1.
        while child <= end.saturating_sub(2) {
            // compare with the greater of the two children
            // SAFETY: child < end - 1 < self.len() and
            //  child + 1 < end <= self.len(), so they're valid indexes.
            //  child == 2 * hole.pos() + 1 != hole.pos() and
            //  child + 1 == 2 * hole.pos() + 2 != hole.pos().
            // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow
            //  if T is a ZST
            child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize;

            // if we are already in order, stop.
            // SAFETY: child is now either the old child or the old child+1
            //  We already proven that both are < self.len() and != hole.pos()
            if hole.element() >= unsafe { hole.get(child) } {
                return;
            }

            // SAFETY: same as above.
            unsafe { hole.move_to(child) };
            child = 2 * hole.pos() + 1;
        }

        // SAFETY: && short circuit, which means that in the
        //  second condition it's already true that child == end - 1 < self.len().
        if child == end - 1 && hole.element() < unsafe { hole.get(child) } {
            // SAFETY: child is already proven to be a valid index and
            //  child == 2 * hole.pos() + 1 != hole.pos().
            unsafe { hole.move_to(child) };
        }
    }

    /// # Safety
    ///
    /// The caller must guarantee that `pos < self.len()`.
    unsafe fn sift_down(&mut self, pos: usize) {
        let len = self.len();
        // SAFETY: pos < len is guaranteed by the caller and
        //  obviously len = self.len() <= self.len().
        unsafe { self.sift_down_range(pos, len) };
    }

    /// Take an element at `pos` and move it all the way down the heap,
    /// then sift it up to its position.
    ///
    /// Note: This is faster when the element is known to be large / should
    /// be closer to the bottom.
    ///
    /// # Safety
    ///
    /// The caller must guarantee that `pos < self.len()`.
    unsafe fn sift_down_to_bottom(&mut self, mut pos: usize) {
        let end = self.len();
        let start = pos;

        // SAFETY: The caller guarantees that pos < self.len().
        let mut hole = unsafe { Hole::new(&mut self.data, pos) };
        let mut child = 2 * hole.pos() + 1;

        // Loop invariant: child == 2 * hole.pos() + 1.
        while child <= end.saturating_sub(2) {
            // SAFETY: child < end - 1 < self.len() and
            //  child + 1 < end <= self.len(), so they're valid indexes.
            //  child == 2 * hole.pos() + 1 != hole.pos() and
            //  child + 1 == 2 * hole.pos() + 2 != hole.pos().
            // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow
            //  if T is a ZST
            child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize;

            // SAFETY: Same as above
            unsafe { hole.move_to(child) };
            child = 2 * hole.pos() + 1;
        }

        if child == end - 1 {
            // SAFETY: child == end - 1 < self.len(), so it's a valid index
            //  and child == 2 * hole.pos() + 1 != hole.pos().
            unsafe { hole.move_to(child) };
        }
        pos = hole.pos();
        drop(hole);

        // SAFETY: pos is the position in the hole and was already proven
        //  to be a valid index.
        unsafe { self.sift_up(start, pos) };
    }

    /// Rebuild assuming data[0..start] is still a proper heap.
    fn rebuild_tail(&mut self, start: usize) {
        if start == self.len() {
            return;
        }

        let tail_len = self.len() - start;

        #[inline(always)]
        fn log2_fast(x: usize) -> usize {
            (usize::BITS - x.leading_zeros() - 1) as usize
        }

        // `rebuild` takes O(self.len()) operations
        // and about 2 * self.len() comparisons in the worst case
        // while repeating `sift_up` takes O(tail_len * log(start)) operations
        // and about 1 * tail_len * log_2(start) comparisons in the worst case,
        // assuming start >= tail_len. For larger heaps, the crossover point
        // no longer follows this reasoning and was determined empirically.
        let better_to_rebuild = if start < tail_len {
            true
        } else if self.len() <= 2048 {
            2 * self.len() < tail_len * log2_fast(start)
        } else {
            2 * self.len() < tail_len * 11
        };

        if better_to_rebuild {
            self.rebuild();
        } else {
            for i in start..self.len() {
                // SAFETY: The index `i` is always less than self.len().
                unsafe { self.sift_up(0, i) };
            }
        }
    }

    fn rebuild(&mut self) {
        let mut n = self.len() / 2;
        while n > 0 {
            n -= 1;
            // SAFETY: n starts from self.len() / 2 and goes down to 0.
            //  The only case when !(n < self.len()) is if
            //  self.len() == 0, but it's ruled out by the loop condition.
            unsafe { self.sift_down(n) };
        }
    }

    /// Moves all the elements of `other` into `self`, leaving `other` empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    ///
    /// let v = vec![-10, 1, 2, 3, 3];
    /// let mut a = BinaryHeap::from(v);
    ///
    /// let v = vec![-20, 5, 43];
    /// let mut b = BinaryHeap::from(v);
    ///
    /// a.append(&mut b);
    ///
    /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]);
    /// assert!(b.is_empty());
    /// ```
    #[stable(feature = "binary_heap_append", since = "1.11.0")]
    pub fn append(&mut self, other: &mut Self) {
        if self.len() < other.len() {
            swap(self, other);
        }

        let start = self.data.len();

        self.data.append(&mut other.data);

        self.rebuild_tail(start);
    }

    /// Returns an iterator which retrieves elements in heap order.
    /// The retrieved elements are removed from the original heap.
    /// The remaining elements will be removed on drop in heap order.
    ///
    /// Note:
    /// * `.drain_sorted()` is *O*(*n* \* log(*n*)); much slower than `.drain()`.
    ///   You should use the latter for most cases.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// #![feature(binary_heap_drain_sorted)]
    /// use std::collections::BinaryHeap;
    ///
    /// let mut heap = BinaryHeap::from(vec![1, 2, 3, 4, 5]);
    /// assert_eq!(heap.len(), 5);
    ///
    /// drop(heap.drain_sorted()); // removes all elements in heap order
    /// assert_eq!(heap.len(), 0);
    /// ```
    #[inline]
    #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
    pub fn drain_sorted(&mut self) -> DrainSorted<'_, T> {
        DrainSorted { inner: self }
    }

    /// Retains only the elements specified by the predicate.
    ///
    /// In other words, remove all elements `e` such that `f(&e)` returns
    /// `false`. The elements are visited in unsorted (and unspecified) order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// #![feature(binary_heap_retain)]
    /// use std::collections::BinaryHeap;
    ///
    /// let mut heap = BinaryHeap::from(vec![-10, -5, 1, 2, 4, 13]);
    ///
    /// heap.retain(|x| x % 2 == 0); // only keep even numbers
    ///
    /// assert_eq!(heap.into_sorted_vec(), [-10, 2, 4])
    /// ```
    #[unstable(feature = "binary_heap_retain", issue = "71503")]
    pub fn retain<F>(&mut self, mut f: F)
    where
        F: FnMut(&T) -> bool,
    {
        let mut first_removed = self.len();
        let mut i = 0;
        self.data.retain(|e| {
            let keep = f(e);
            if !keep && i < first_removed {
                first_removed = i;
            }
            i += 1;
            keep
        });
        // data[0..first_removed] is untouched, so we only need to rebuild the tail:
        self.rebuild_tail(first_removed);
    }
}

impl<T> BinaryHeap<T> {
    /// Returns an iterator visiting all values in the underlying vector, in
    /// arbitrary order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
    ///
    /// // Print 1, 2, 3, 4 in arbitrary order
    /// for x in heap.iter() {
    ///     println!("{}", x);
    /// }
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn iter(&self) -> Iter<'_, T> {
        Iter { iter: self.data.iter() }
    }

    /// Returns an iterator which retrieves elements in heap order.
    /// This method consumes the original heap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// #![feature(binary_heap_into_iter_sorted)]
    /// use std::collections::BinaryHeap;
    /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5]);
    ///
    /// assert_eq!(heap.into_iter_sorted().take(2).collect::<Vec<_>>(), vec![5, 4]);
    /// ```
    #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
    pub fn into_iter_sorted(self) -> IntoIterSorted<T> {
        IntoIterSorted { inner: self }
    }

    /// Returns the greatest item in the binary heap, or `None` if it is empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap = BinaryHeap::new();
    /// assert_eq!(heap.peek(), None);
    ///
    /// heap.push(1);
    /// heap.push(5);
    /// heap.push(2);
    /// assert_eq!(heap.peek(), Some(&5));
    ///
    /// ```
    ///
    /// # Time complexity
    ///
    /// Cost is *O*(1) in the worst case.
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn peek(&self) -> Option<&T> {
        self.data.get(0)
    }

    /// Returns the number of elements the binary heap can hold without reallocating.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap = BinaryHeap::with_capacity(100);
    /// assert!(heap.capacity() >= 100);
    /// heap.push(4);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn capacity(&self) -> usize {
        self.data.capacity()
    }

    /// Reserves the minimum capacity for exactly `additional` more elements to be inserted in the
    /// given `BinaryHeap`. Does nothing if the capacity is already sufficient.
    ///
    /// Note that the allocator may give the collection more space than it requests. Therefore
    /// capacity can not be relied upon to be precisely minimal. Prefer [`reserve`] if future
    /// insertions are expected.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap = BinaryHeap::new();
    /// heap.reserve_exact(100);
    /// assert!(heap.capacity() >= 100);
    /// heap.push(4);
    /// ```
    ///
    /// [`reserve`]: BinaryHeap::reserve
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn reserve_exact(&mut self, additional: usize) {
        self.data.reserve_exact(additional);
    }

    /// Reserves capacity for at least `additional` more elements to be inserted in the
    /// `BinaryHeap`. The collection may reserve more space to avoid frequent reallocations.
    ///
    /// # Panics
    ///
    /// Panics if the new capacity overflows `usize`.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap = BinaryHeap::new();
    /// heap.reserve(100);
    /// assert!(heap.capacity() >= 100);
    /// heap.push(4);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn reserve(&mut self, additional: usize) {
        self.data.reserve(additional);
    }

    /// Discards as much additional capacity as possible.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
    ///
    /// assert!(heap.capacity() >= 100);
    /// heap.shrink_to_fit();
    /// assert!(heap.capacity() == 0);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn shrink_to_fit(&mut self) {
        self.data.shrink_to_fit();
    }

    /// Discards capacity with a lower bound.
    ///
    /// The capacity will remain at least as large as both the length
    /// and the supplied value.
    ///
    /// If the current capacity is less than the lower limit, this is a no-op.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100);
    ///
    /// assert!(heap.capacity() >= 100);
    /// heap.shrink_to(10);
    /// assert!(heap.capacity() >= 10);
    /// ```
    #[inline]
    #[stable(feature = "shrink_to", since = "1.56.0")]
    pub fn shrink_to(&mut self, min_capacity: usize) {
        self.data.shrink_to(min_capacity)
    }

    /// Returns a slice of all values in the underlying vector, in arbitrary
    /// order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// #![feature(binary_heap_as_slice)]
    /// use std::collections::BinaryHeap;
    /// use std::io::{self, Write};
    ///
    /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]);
    ///
    /// io::sink().write(heap.as_slice()).unwrap();
    /// ```
    #[unstable(feature = "binary_heap_as_slice", issue = "83659")]
    pub fn as_slice(&self) -> &[T] {
        self.data.as_slice()
    }

    /// Consumes the `BinaryHeap` and returns the underlying vector
    /// in arbitrary order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]);
    /// let vec = heap.into_vec();
    ///
    /// // Will print in some order
    /// for x in vec {
    ///     println!("{}", x);
    /// }
    /// ```
    #[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
    pub fn into_vec(self) -> Vec<T> {
        self.into()
    }

    /// Returns the length of the binary heap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let heap = BinaryHeap::from(vec![1, 3]);
    ///
    /// assert_eq!(heap.len(), 2);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn len(&self) -> usize {
        self.data.len()
    }

    /// Checks if the binary heap is empty.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap = BinaryHeap::new();
    ///
    /// assert!(heap.is_empty());
    ///
    /// heap.push(3);
    /// heap.push(5);
    /// heap.push(1);
    ///
    /// assert!(!heap.is_empty());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Clears the binary heap, returning an iterator over the removed elements.
    ///
    /// The elements are removed in arbitrary order.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap = BinaryHeap::from(vec![1, 3]);
    ///
    /// assert!(!heap.is_empty());
    ///
    /// for x in heap.drain() {
    ///     println!("{}", x);
    /// }
    ///
    /// assert!(heap.is_empty());
    /// ```
    #[inline]
    #[stable(feature = "drain", since = "1.6.0")]
    pub fn drain(&mut self) -> Drain<'_, T> {
        Drain { iter: self.data.drain(..) }
    }

    /// Drops all items from the binary heap.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let mut heap = BinaryHeap::from(vec![1, 3]);
    ///
    /// assert!(!heap.is_empty());
    ///
    /// heap.clear();
    ///
    /// assert!(heap.is_empty());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn clear(&mut self) {
        self.drain();
    }
}

/// Hole represents a hole in a slice i.e., an index without valid value
/// (because it was moved from or duplicated).
/// In drop, `Hole` will restore the slice by filling the hole
/// position with the value that was originally removed.
struct Hole<'a, T: 'a> {
    data: &'a mut [T],
    elt: ManuallyDrop<T>,
    pos: usize,
}

impl<'a, T> Hole<'a, T> {
    /// Create a new `Hole` at index `pos`.
    ///
    /// Unsafe because pos must be within the data slice.
    #[inline]
    unsafe fn new(data: &'a mut [T], pos: usize) -> Self {
        debug_assert!(pos < data.len());
        // SAFE: pos should be inside the slice
        let elt = unsafe { ptr::read(data.get_unchecked(pos)) };
        Hole { data, elt: ManuallyDrop::new(elt), pos }
    }

    #[inline]
    fn pos(&self) -> usize {
        self.pos
    }

    /// Returns a reference to the element removed.
    #[inline]
    fn element(&self) -> &T {
        &self.elt
    }

    /// Returns a reference to the element at `index`.
    ///
    /// Unsafe because index must be within the data slice and not equal to pos.
    #[inline]
    unsafe fn get(&self, index: usize) -> &T {
        debug_assert!(index != self.pos);
        debug_assert!(index < self.data.len());
        unsafe { self.data.get_unchecked(index) }
    }

    /// Move hole to new location
    ///
    /// Unsafe because index must be within the data slice and not equal to pos.
    #[inline]
    unsafe fn move_to(&mut self, index: usize) {
        debug_assert!(index != self.pos);
        debug_assert!(index < self.data.len());
        unsafe {
            let ptr = self.data.as_mut_ptr();
            let index_ptr: *const _ = ptr.add(index);
            let hole_ptr = ptr.add(self.pos);
            ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1);
        }
        self.pos = index;
    }
}

impl<T> Drop for Hole<'_, T> {
    #[inline]
    fn drop(&mut self) {
        // fill the hole again
        unsafe {
            let pos = self.pos;
            ptr::copy_nonoverlapping(&*self.elt, self.data.get_unchecked_mut(pos), 1);
        }
    }
}

/// An iterator over the elements of a `BinaryHeap`.
///
/// This `struct` is created by [`BinaryHeap::iter()`]. See its
/// documentation for more.
///
/// [`iter`]: BinaryHeap::iter
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter<'a, T: 'a> {
    iter: slice::Iter<'a, T>,
}

#[stable(feature = "collection_debug", since = "1.17.0")]
impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("Iter").field(&self.iter.as_slice()).finish()
    }
}

// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Clone for Iter<'_, T> {
    fn clone(&self) -> Self {
        Iter { iter: self.iter.clone() }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for Iter<'a, T> {
    type Item = &'a T;

    #[inline]
    fn next(&mut self) -> Option<&'a T> {
        self.iter.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }

    #[inline]
    fn last(self) -> Option<&'a T> {
        self.iter.last()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
    #[inline]
    fn next_back(&mut self) -> Option<&'a T> {
        self.iter.next_back()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ExactSizeIterator for Iter<'_, T> {
    fn is_empty(&self) -> bool {
        self.iter.is_empty()
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl<T> FusedIterator for Iter<'_, T> {}

/// An owning iterator over the elements of a `BinaryHeap`.
///
/// This `struct` is created by [`BinaryHeap::into_iter()`]
/// (provided by the `IntoIterator` trait). See its documentation for more.
///
/// [`into_iter`]: BinaryHeap::into_iter
#[stable(feature = "rust1", since = "1.0.0")]
#[derive(Clone)]
pub struct IntoIter<T> {
    iter: vec::IntoIter<T>,
}

#[stable(feature = "collection_debug", since = "1.17.0")]
impl<T: fmt::Debug> fmt::Debug for IntoIter<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("IntoIter").field(&self.iter.as_slice()).finish()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Iterator for IntoIter<T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.iter.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> DoubleEndedIterator for IntoIter<T> {
    #[inline]
    fn next_back(&mut self) -> Option<T> {
        self.iter.next_back()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ExactSizeIterator for IntoIter<T> {
    fn is_empty(&self) -> bool {
        self.iter.is_empty()
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl<T> FusedIterator for IntoIter<T> {}

#[unstable(issue = "none", feature = "inplace_iteration")]
#[doc(hidden)]
unsafe impl<T> SourceIter for IntoIter<T> {
    type Source = IntoIter<T>;

    #[inline]
    unsafe fn as_inner(&mut self) -> &mut Self::Source {
        self
    }
}

#[unstable(issue = "none", feature = "inplace_iteration")]
#[doc(hidden)]
unsafe impl<I> InPlaceIterable for IntoIter<I> {}

impl<I> AsIntoIter for IntoIter<I> {
    type Item = I;

    fn as_into_iter(&mut self) -> &mut vec::IntoIter<Self::Item> {
        &mut self.iter
    }
}

#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
#[derive(Clone, Debug)]
pub struct IntoIterSorted<T> {
    inner: BinaryHeap<T>,
}

#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
impl<T: Ord> Iterator for IntoIterSorted<T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.inner.pop()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let exact = self.inner.len();
        (exact, Some(exact))
    }
}

#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
impl<T: Ord> ExactSizeIterator for IntoIterSorted<T> {}

#[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")]
impl<T: Ord> FusedIterator for IntoIterSorted<T> {}

#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<T: Ord> TrustedLen for IntoIterSorted<T> {}

/// A draining iterator over the elements of a `BinaryHeap`.
///
/// This `struct` is created by [`BinaryHeap::drain()`]. See its
/// documentation for more.
///
/// [`drain`]: BinaryHeap::drain
#[stable(feature = "drain", since = "1.6.0")]
#[derive(Debug)]
pub struct Drain<'a, T: 'a> {
    iter: vec::Drain<'a, T>,
}

#[stable(feature = "drain", since = "1.6.0")]
impl<T> Iterator for Drain<'_, T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.iter.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.iter.size_hint()
    }
}

#[stable(feature = "drain", since = "1.6.0")]
impl<T> DoubleEndedIterator for Drain<'_, T> {
    #[inline]
    fn next_back(&mut self) -> Option<T> {
        self.iter.next_back()
    }
}

#[stable(feature = "drain", since = "1.6.0")]
impl<T> ExactSizeIterator for Drain<'_, T> {
    fn is_empty(&self) -> bool {
        self.iter.is_empty()
    }
}

#[stable(feature = "fused", since = "1.26.0")]
impl<T> FusedIterator for Drain<'_, T> {}

/// A draining iterator over the elements of a `BinaryHeap`.
///
/// This `struct` is created by [`BinaryHeap::drain_sorted()`]. See its
/// documentation for more.
///
/// [`drain_sorted`]: BinaryHeap::drain_sorted
#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
#[derive(Debug)]
pub struct DrainSorted<'a, T: Ord> {
    inner: &'a mut BinaryHeap<T>,
}

#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
impl<'a, T: Ord> Drop for DrainSorted<'a, T> {
    /// Removes heap elements in heap order.
    fn drop(&mut self) {
        struct DropGuard<'r, 'a, T: Ord>(&'r mut DrainSorted<'a, T>);

        impl<'r, 'a, T: Ord> Drop for DropGuard<'r, 'a, T> {
            fn drop(&mut self) {
                while self.0.inner.pop().is_some() {}
            }
        }

        while let Some(item) = self.inner.pop() {
            let guard = DropGuard(self);
            drop(item);
            mem::forget(guard);
        }
    }
}

#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
impl<T: Ord> Iterator for DrainSorted<'_, T> {
    type Item = T;

    #[inline]
    fn next(&mut self) -> Option<T> {
        self.inner.pop()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        let exact = self.inner.len();
        (exact, Some(exact))
    }
}

#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
impl<T: Ord> ExactSizeIterator for DrainSorted<'_, T> {}

#[unstable(feature = "binary_heap_drain_sorted", issue = "59278")]
impl<T: Ord> FusedIterator for DrainSorted<'_, T> {}

#[unstable(feature = "trusted_len", issue = "37572")]
unsafe impl<T: Ord> TrustedLen for DrainSorted<'_, T> {}

#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
impl<T: Ord> From<Vec<T>> for BinaryHeap<T> {
    /// Converts a `Vec<T>` into a `BinaryHeap<T>`.
    ///
    /// This conversion happens in-place, and has *O*(*n*) time complexity.
    fn from(vec: Vec<T>) -> BinaryHeap<T> {
        let mut heap = BinaryHeap { data: vec };
        heap.rebuild();
        heap
    }
}

#[stable(feature = "std_collections_from_array", since = "1.56.0")]
impl<T: Ord, const N: usize> From<[T; N]> for BinaryHeap<T> {
    /// ```
    /// use std::collections::BinaryHeap;
    ///
    /// let mut h1 = BinaryHeap::from([1, 4, 2, 3]);
    /// let mut h2: BinaryHeap<_> = [1, 4, 2, 3].into();
    /// while let Some((a, b)) = h1.pop().zip(h2.pop()) {
    ///     assert_eq!(a, b);
    /// }
    /// ```
    fn from(arr: [T; N]) -> Self {
        core::array::IntoIter::new(arr).collect()
    }
}

#[stable(feature = "binary_heap_extras_15", since = "1.5.0")]
impl<T> From<BinaryHeap<T>> for Vec<T> {
    /// Converts a `BinaryHeap<T>` into a `Vec<T>`.
    ///
    /// This conversion requires no data movement or allocation, and has
    /// constant time complexity.
    fn from(heap: BinaryHeap<T>) -> Vec<T> {
        heap.data
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> FromIterator<T> for BinaryHeap<T> {
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> BinaryHeap<T> {
        BinaryHeap::from(iter.into_iter().collect::<Vec<_>>())
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T> IntoIterator for BinaryHeap<T> {
    type Item = T;
    type IntoIter = IntoIter<T>;

    /// Creates a consuming iterator, that is, one that moves each value out of
    /// the binary heap in arbitrary order. The binary heap cannot be used
    /// after calling this.
    ///
    /// # Examples
    ///
    /// Basic usage:
    ///
    /// ```
    /// use std::collections::BinaryHeap;
    /// let heap = BinaryHeap::from(vec![1, 2, 3, 4]);
    ///
    /// // Print 1, 2, 3, 4 in arbitrary order
    /// for x in heap.into_iter() {
    ///     // x has type i32, not &i32
    ///     println!("{}", x);
    /// }
    /// ```
    fn into_iter(self) -> IntoIter<T> {
        IntoIter { iter: self.data.into_iter() }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> IntoIterator for &'a BinaryHeap<T> {
    type Item = &'a T;
    type IntoIter = Iter<'a, T>;

    fn into_iter(self) -> Iter<'a, T> {
        self.iter()
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord> Extend<T> for BinaryHeap<T> {
    #[inline]
    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        <Self as SpecExtend<I>>::spec_extend(self, iter);
    }

    #[inline]
    fn extend_one(&mut self, item: T) {
        self.push(item);
    }

    #[inline]
    fn extend_reserve(&mut self, additional: usize) {
        self.reserve(additional);
    }
}

impl<T: Ord, I: IntoIterator<Item = T>> SpecExtend<I> for BinaryHeap<T> {
    default fn spec_extend(&mut self, iter: I) {
        self.extend_desugared(iter.into_iter());
    }
}

impl<T: Ord> SpecExtend<BinaryHeap<T>> for BinaryHeap<T> {
    fn spec_extend(&mut self, ref mut other: BinaryHeap<T>) {
        self.append(other);
    }
}

impl<T: Ord> BinaryHeap<T> {
    fn extend_desugared<I: IntoIterator<Item = T>>(&mut self, iter: I) {
        let iterator = iter.into_iter();
        let (lower, _) = iterator.size_hint();

        self.reserve(lower);

        iterator.for_each(move |elem| self.push(elem));
    }
}

#[stable(feature = "extend_ref", since = "1.2.0")]
impl<'a, T: 'a + Ord + Copy> Extend<&'a T> for BinaryHeap<T> {
    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
        self.extend(iter.into_iter().cloned());
    }

    #[inline]
    fn extend_one(&mut self, &item: &'a T) {
        self.push(item);
    }

    #[inline]
    fn extend_reserve(&mut self, additional: usize) {
        self.reserve(additional);
    }
}