1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
//! Defines the `IntoIter` owned iterator for arrays.
use crate::{
fmt,
iter::{self, ExactSizeIterator, FusedIterator, TrustedLen},
mem::{self, MaybeUninit},
ops::Range,
ptr,
};
/// A by-value [array] iterator.
#[stable(feature = "array_value_iter", since = "1.51.0")]
pub struct IntoIter<T, const N: usize> {
/// This is the array we are iterating over.
///
/// Elements with index `i` where `alive.start <= i < alive.end` have not
/// been yielded yet and are valid array entries. Elements with indices `i
/// < alive.start` or `i >= alive.end` have been yielded already and must
/// not be accessed anymore! Those dead elements might even be in a
/// completely uninitialized state!
///
/// So the invariants are:
/// - `data[alive]` is alive (i.e. contains valid elements)
/// - `data[..alive.start]` and `data[alive.end..]` are dead (i.e. the
/// elements were already read and must not be touched anymore!)
data: [MaybeUninit<T>; N],
/// The elements in `data` that have not been yielded yet.
///
/// Invariants:
/// - `alive.start <= alive.end`
/// - `alive.end <= N`
alive: Range<usize>,
}
impl<T, const N: usize> IntoIter<T, N> {
/// Creates a new iterator over the given `array`.
///
/// *Note*: this method might be deprecated in the future,
/// after [`IntoIterator` is implemented for arrays][array-into-iter].
///
/// # Examples
///
/// ```
/// use std::array;
///
/// for value in array::IntoIter::new([1, 2, 3, 4, 5]) {
/// // The type of `value` is an `i32` here, instead of `&i32`
/// let _: i32 = value;
/// }
/// ```
/// [array-into-iter]: https://github.com/rust-lang/rust/pull/65819
#[stable(feature = "array_value_iter", since = "1.51.0")]
pub fn new(array: [T; N]) -> Self {
// SAFETY: The transmute here is actually safe. The docs of `MaybeUninit`
// promise:
//
// > `MaybeUninit<T>` is guaranteed to have the same size and alignment
// > as `T`.
//
// The docs even show a transmute from an array of `MaybeUninit<T>` to
// an array of `T`.
//
// With that, this initialization satisfies the invariants.
// FIXME(LukasKalbertodt): actually use `mem::transmute` here, once it
// works with const generics:
// `mem::transmute::<[T; N], [MaybeUninit<T>; N]>(array)`
//
// Until then, we can use `mem::transmute_copy` to create a bitwise copy
// as a different type, then forget `array` so that it is not dropped.
unsafe {
let iter = Self { data: mem::transmute_copy(&array), alive: 0..N };
mem::forget(array);
iter
}
}
/// Returns an immutable slice of all elements that have not been yielded
/// yet.
#[stable(feature = "array_value_iter", since = "1.51.0")]
pub fn as_slice(&self) -> &[T] {
// SAFETY: We know that all elements within `alive` are properly initialized.
unsafe {
let slice = self.data.get_unchecked(self.alive.clone());
MaybeUninit::slice_assume_init_ref(slice)
}
}
/// Returns a mutable slice of all elements that have not been yielded yet.
#[stable(feature = "array_value_iter", since = "1.51.0")]
pub fn as_mut_slice(&mut self) -> &mut [T] {
// SAFETY: We know that all elements within `alive` are properly initialized.
unsafe {
let slice = self.data.get_unchecked_mut(self.alive.clone());
MaybeUninit::slice_assume_init_mut(slice)
}
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> Iterator for IntoIter<T, N> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
// Get the next index from the front.
//
// Increasing `alive.start` by 1 maintains the invariant regarding
// `alive`. However, due to this change, for a short time, the alive
// zone is not `data[alive]` anymore, but `data[idx..alive.end]`.
self.alive.next().map(|idx| {
// Read the element from the array.
// SAFETY: `idx` is an index into the former "alive" region of the
// array. Reading this element means that `data[idx]` is regarded as
// dead now (i.e. do not touch). As `idx` was the start of the
// alive-zone, the alive zone is now `data[alive]` again, restoring
// all invariants.
unsafe { self.data.get_unchecked(idx).assume_init_read() }
})
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
#[inline]
fn fold<Acc, Fold>(mut self, init: Acc, mut fold: Fold) -> Acc
where
Fold: FnMut(Acc, Self::Item) -> Acc,
{
let data = &mut self.data;
// FIXME: This uses try_fold(&mut iter) instead of fold(iter) because the latter
// would go through the blanket `impl Iterator for &mut I` implementation
// which lacks inline annotations on its methods and adding those would be a larger
// perturbation than using try_fold here.
// Whether it would be beneficial to add those annotations should be investigated separately.
(&mut self.alive)
.try_fold::<_, _, Result<_, !>>(init, |acc, idx| {
// SAFETY: idx is obtained by folding over the `alive` range, which implies the
// value is currently considered alive but as the range is being consumed each value
// we read here will only be read once and then considered dead.
Ok(fold(acc, unsafe { data.get_unchecked(idx).assume_init_read() }))
})
.unwrap()
}
fn count(self) -> usize {
self.len()
}
fn last(mut self) -> Option<Self::Item> {
self.next_back()
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> DoubleEndedIterator for IntoIter<T, N> {
fn next_back(&mut self) -> Option<Self::Item> {
// Get the next index from the back.
//
// Decreasing `alive.end` by 1 maintains the invariant regarding
// `alive`. However, due to this change, for a short time, the alive
// zone is not `data[alive]` anymore, but `data[alive.start..=idx]`.
self.alive.next_back().map(|idx| {
// Read the element from the array.
// SAFETY: `idx` is an index into the former "alive" region of the
// array. Reading this element means that `data[idx]` is regarded as
// dead now (i.e. do not touch). As `idx` was the end of the
// alive-zone, the alive zone is now `data[alive]` again, restoring
// all invariants.
unsafe { self.data.get_unchecked(idx).assume_init_read() }
})
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> Drop for IntoIter<T, N> {
fn drop(&mut self) {
// SAFETY: This is safe: `as_mut_slice` returns exactly the sub-slice
// of elements that have not been moved out yet and that remain
// to be dropped.
unsafe { ptr::drop_in_place(self.as_mut_slice()) }
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> ExactSizeIterator for IntoIter<T, N> {
fn len(&self) -> usize {
// Will never underflow due to the invariant `alive.start <=
// alive.end`.
self.alive.end - self.alive.start
}
fn is_empty(&self) -> bool {
self.alive.is_empty()
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T, const N: usize> FusedIterator for IntoIter<T, N> {}
// The iterator indeed reports the correct length. The number of "alive"
// elements (that will still be yielded) is the length of the range `alive`.
// This range is decremented in length in either `next` or `next_back`. It is
// always decremented by 1 in those methods, but only if `Some(_)` is returned.
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
unsafe impl<T, const N: usize> TrustedLen for IntoIter<T, N> {}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T: Clone, const N: usize> Clone for IntoIter<T, N> {
fn clone(&self) -> Self {
// Note, we don't really need to match the exact same alive range, so
// we can just clone into offset 0 regardless of where `self` is.
let mut new = Self { data: MaybeUninit::uninit_array(), alive: 0..0 };
// Clone all alive elements.
for (src, dst) in iter::zip(self.as_slice(), &mut new.data) {
// Write a clone into the new array, then update its alive range.
// If cloning panics, we'll correctly drop the previous items.
dst.write(src.clone());
new.alive.end += 1;
}
new
}
}
#[stable(feature = "array_value_iter_impls", since = "1.40.0")]
impl<T: fmt::Debug, const N: usize> fmt::Debug for IntoIter<T, N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Only print the elements that were not yielded yet: we cannot
// access the yielded elements anymore.
f.debug_tuple("IntoIter").field(&self.as_slice()).finish()
}
}