1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
//! Character conversions.
use crate::convert::TryFrom;
use crate::fmt;
use crate::mem::transmute;
use crate::str::FromStr;
use super::MAX;
/// Converts a `u32` to a `char`.
///
/// Note that all [`char`]s are valid [`u32`]s, and can be cast to one with
/// `as`:
///
/// ```
/// let c = '💯';
/// let i = c as u32;
///
/// assert_eq!(128175, i);
/// ```
///
/// However, the reverse is not true: not all valid [`u32`]s are valid
/// [`char`]s. `from_u32()` will return `None` if the input is not a valid value
/// for a [`char`].
///
/// For an unsafe version of this function which ignores these checks, see
/// [`from_u32_unchecked`].
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::char;
///
/// let c = char::from_u32(0x2764);
///
/// assert_eq!(Some('❤'), c);
/// ```
///
/// Returning `None` when the input is not a valid [`char`]:
///
/// ```
/// use std::char;
///
/// let c = char::from_u32(0x110000);
///
/// assert_eq!(None, c);
/// ```
#[doc(alias = "chr")]
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_u32(i: u32) -> Option<char> {
char::try_from(i).ok()
}
/// Converts a `u32` to a `char`, ignoring validity.
///
/// Note that all [`char`]s are valid [`u32`]s, and can be cast to one with
/// `as`:
///
/// ```
/// let c = '💯';
/// let i = c as u32;
///
/// assert_eq!(128175, i);
/// ```
///
/// However, the reverse is not true: not all valid [`u32`]s are valid
/// [`char`]s. `from_u32_unchecked()` will ignore this, and blindly cast to
/// [`char`], possibly creating an invalid one.
///
/// # Safety
///
/// This function is unsafe, as it may construct invalid `char` values.
///
/// For a safe version of this function, see the [`from_u32`] function.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::char;
///
/// let c = unsafe { char::from_u32_unchecked(0x2764) };
///
/// assert_eq!('❤', c);
/// ```
#[inline]
#[stable(feature = "char_from_unchecked", since = "1.5.0")]
pub unsafe fn from_u32_unchecked(i: u32) -> char {
// SAFETY: the caller must guarantee that `i` is a valid char value.
if cfg!(debug_assertions) { char::from_u32(i).unwrap() } else { unsafe { transmute(i) } }
}
#[stable(feature = "char_convert", since = "1.13.0")]
impl From<char> for u32 {
/// Converts a [`char`] into a [`u32`].
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let c = 'c';
/// let u = u32::from(c);
/// assert!(4 == mem::size_of_val(&u))
/// ```
#[inline]
fn from(c: char) -> Self {
c as u32
}
}
#[stable(feature = "more_char_conversions", since = "1.51.0")]
impl From<char> for u64 {
/// Converts a [`char`] into a [`u64`].
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let c = '👤';
/// let u = u64::from(c);
/// assert!(8 == mem::size_of_val(&u))
/// ```
#[inline]
fn from(c: char) -> Self {
// The char is casted to the value of the code point, then zero-extended to 64 bit.
// See [https://doc.rust-lang.org/reference/expressions/operator-expr.html#semantics]
c as u64
}
}
#[stable(feature = "more_char_conversions", since = "1.51.0")]
impl From<char> for u128 {
/// Converts a [`char`] into a [`u128`].
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let c = '⚙';
/// let u = u128::from(c);
/// assert!(16 == mem::size_of_val(&u))
/// ```
#[inline]
fn from(c: char) -> Self {
// The char is casted to the value of the code point, then zero-extended to 128 bit.
// See [https://doc.rust-lang.org/reference/expressions/operator-expr.html#semantics]
c as u128
}
}
/// Maps a byte in 0x00..=0xFF to a `char` whose code point has the same value, in U+0000..=U+00FF.
///
/// Unicode is designed such that this effectively decodes bytes
/// with the character encoding that IANA calls ISO-8859-1.
/// This encoding is compatible with ASCII.
///
/// Note that this is different from ISO/IEC 8859-1 a.k.a. ISO 8859-1 (with one less hyphen),
/// which leaves some "blanks", byte values that are not assigned to any character.
/// ISO-8859-1 (the IANA one) assigns them to the C0 and C1 control codes.
///
/// Note that this is *also* different from Windows-1252 a.k.a. code page 1252,
/// which is a superset ISO/IEC 8859-1 that assigns some (not all!) blanks
/// to punctuation and various Latin characters.
///
/// To confuse things further, [on the Web](https://encoding.spec.whatwg.org/)
/// `ascii`, `iso-8859-1`, and `windows-1252` are all aliases
/// for a superset of Windows-1252 that fills the remaining blanks with corresponding
/// C0 and C1 control codes.
#[stable(feature = "char_convert", since = "1.13.0")]
impl From<u8> for char {
/// Converts a [`u8`] into a [`char`].
///
/// # Examples
///
/// ```
/// use std::mem;
///
/// let u = 32 as u8;
/// let c = char::from(u);
/// assert!(4 == mem::size_of_val(&c))
/// ```
#[inline]
fn from(i: u8) -> Self {
i as char
}
}
/// An error which can be returned when parsing a char.
#[stable(feature = "char_from_str", since = "1.20.0")]
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct ParseCharError {
kind: CharErrorKind,
}
impl ParseCharError {
#[unstable(
feature = "char_error_internals",
reason = "this method should not be available publicly",
issue = "none"
)]
#[doc(hidden)]
pub fn __description(&self) -> &str {
match self.kind {
CharErrorKind::EmptyString => "cannot parse char from empty string",
CharErrorKind::TooManyChars => "too many characters in string",
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum CharErrorKind {
EmptyString,
TooManyChars,
}
#[stable(feature = "char_from_str", since = "1.20.0")]
impl fmt::Display for ParseCharError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.__description().fmt(f)
}
}
#[stable(feature = "char_from_str", since = "1.20.0")]
impl FromStr for char {
type Err = ParseCharError;
#[inline]
fn from_str(s: &str) -> Result<Self, Self::Err> {
let mut chars = s.chars();
match (chars.next(), chars.next()) {
(None, _) => Err(ParseCharError { kind: CharErrorKind::EmptyString }),
(Some(c), None) => Ok(c),
_ => Err(ParseCharError { kind: CharErrorKind::TooManyChars }),
}
}
}
#[stable(feature = "try_from", since = "1.34.0")]
impl TryFrom<u32> for char {
type Error = CharTryFromError;
#[inline]
fn try_from(i: u32) -> Result<Self, Self::Error> {
if (i > MAX as u32) || (i >= 0xD800 && i <= 0xDFFF) {
Err(CharTryFromError(()))
} else {
// SAFETY: checked that it's a legal unicode value
Ok(unsafe { transmute(i) })
}
}
}
/// The error type returned when a conversion from u32 to char fails.
#[stable(feature = "try_from", since = "1.34.0")]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct CharTryFromError(());
#[stable(feature = "try_from", since = "1.34.0")]
impl fmt::Display for CharTryFromError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
"converted integer out of range for `char`".fmt(f)
}
}
/// Converts a digit in the given radix to a `char`.
///
/// A 'radix' here is sometimes also called a 'base'. A radix of two
/// indicates a binary number, a radix of ten, decimal, and a radix of
/// sixteen, hexadecimal, to give some common values. Arbitrary
/// radices are supported.
///
/// `from_digit()` will return `None` if the input is not a digit in
/// the given radix.
///
/// # Panics
///
/// Panics if given a radix larger than 36.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::char;
///
/// let c = char::from_digit(4, 10);
///
/// assert_eq!(Some('4'), c);
///
/// // Decimal 11 is a single digit in base 16
/// let c = char::from_digit(11, 16);
///
/// assert_eq!(Some('b'), c);
/// ```
///
/// Returning `None` when the input is not a digit:
///
/// ```
/// use std::char;
///
/// let c = char::from_digit(20, 10);
///
/// assert_eq!(None, c);
/// ```
///
/// Passing a large radix, causing a panic:
///
/// ```should_panic
/// use std::char;
///
/// // this panics
/// let c = char::from_digit(1, 37);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn from_digit(num: u32, radix: u32) -> Option<char> {
if radix > 36 {
panic!("from_digit: radix is too high (maximum 36)");
}
if num < radix {
let num = num as u8;
if num < 10 { Some((b'0' + num) as char) } else { Some((b'a' + num - 10) as char) }
} else {
None
}
}