1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
//! [F16C intrinsics].
//!
//! [F16C intrinsics]: https://software.intel.com/sites/landingpage/IntrinsicsGuide/#text=fp16&expand=1769

use crate::{
    core_arch::{simd::*, x86::*},
    //    hint::unreachable_unchecked,
    mem::transmute,
};

#[cfg(test)]
use stdarch_test::assert_instr;

#[allow(improper_ctypes)]
extern "unadjusted" {
    #[link_name = "llvm.x86.vcvtph2ps.128"]
    fn llvm_vcvtph2ps_128(a: i16x8) -> f32x4;
    #[link_name = "llvm.x86.vcvtph2ps.256"]
    fn llvm_vcvtph2ps_256(a: i16x8) -> f32x8;
    #[link_name = "llvm.x86.vcvtps2ph.128"]
    fn llvm_vcvtps2ph_128(a: f32x4, rounding: i32) -> i16x8;
    #[link_name = "llvm.x86.vcvtps2ph.256"]
    fn llvm_vcvtps2ph_256(a: f32x8, rounding: i32) -> i16x8;
}

/// Converts the 4 x 16-bit half-precision float values in the lowest 64-bit of
/// the 128-bit vector `a` into 4 x 32-bit float values stored in a 128-bit wide
/// vector.
#[inline]
#[target_feature(enable = "f16c")]
#[cfg_attr(test, assert_instr("vcvtph2ps"))]
pub unsafe fn _mm_cvtph_ps(a: __m128i) -> __m128 {
    transmute(llvm_vcvtph2ps_128(transmute(a)))
}

/// Converts the 8 x 16-bit half-precision float values in the 128-bit vector
/// `a` into 8 x 32-bit float values stored in a 256-bit wide vector.
#[inline]
#[target_feature(enable = "f16c")]
#[cfg_attr(test, assert_instr("vcvtph2ps"))]
pub unsafe fn _mm256_cvtph_ps(a: __m128i) -> __m256 {
    transmute(llvm_vcvtph2ps_256(transmute(a)))
}

/// Converts the 4 x 32-bit float values in the 128-bit vector `a` into 4 x
/// 16-bit half-precision float values stored in the lowest 64-bit of a 128-bit
/// vector.
///
/// Rounding is done according to the `imm_rounding` parameter, which can be one of:
///
/// * `_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC`: round to nearest and suppress exceptions,
/// * `_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC`: round down and suppress exceptions,
/// * `_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC`: round up and suppress exceptions,
/// * `_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC`: truncate and suppress exceptions,
/// * `_MM_FROUND_CUR_DIRECTION`: use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`].
#[inline]
#[target_feature(enable = "f16c")]
#[cfg_attr(test, assert_instr("vcvtps2ph", IMM_ROUNDING = 0))]
#[rustc_legacy_const_generics(1)]
pub unsafe fn _mm_cvtps_ph<const IMM_ROUNDING: i32>(a: __m128) -> __m128i {
    static_assert_imm3!(IMM_ROUNDING);
    let a = a.as_f32x4();
    let r = llvm_vcvtps2ph_128(a, IMM_ROUNDING);
    transmute(r)
}

/// Converts the 8 x 32-bit float values in the 256-bit vector `a` into 8 x
/// 16-bit half-precision float values stored in a 128-bit wide vector.
///
/// Rounding is done according to the `imm_rounding` parameter, which can be one of:
///
/// * `_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC`: round to nearest and suppress exceptions,
/// * `_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC`: round down and suppress exceptions,
/// * `_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC`: round up and suppress exceptions,
/// * `_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC`: truncate and suppress exceptions,
/// * `_MM_FROUND_CUR_DIRECTION`: use `MXCSR.RC` - see [`_MM_SET_ROUNDING_MODE`].
#[inline]
#[target_feature(enable = "f16c")]
#[cfg_attr(test, assert_instr("vcvtps2ph", IMM_ROUNDING = 0))]
#[rustc_legacy_const_generics(1)]
pub unsafe fn _mm256_cvtps_ph<const IMM_ROUNDING: i32>(a: __m256) -> __m128i {
    static_assert_imm3!(IMM_ROUNDING);
    let a = a.as_f32x8();
    let r = llvm_vcvtps2ph_256(a, IMM_ROUNDING);
    transmute(r)
}

#[cfg(test)]
mod tests {
    use crate::{core_arch::x86::*, mem::transmute};
    use stdarch_test::simd_test;

    #[simd_test(enable = "f16c")]
    unsafe fn test_mm_cvtph_ps() {
        let array = [1_f32, 2_f32, 3_f32, 4_f32];
        let float_vec: __m128 = transmute(array);
        let halfs: __m128i = _mm_cvtps_ph::<0>(float_vec);
        let floats: __m128 = _mm_cvtph_ps(halfs);
        let result: [f32; 4] = transmute(floats);
        assert_eq!(result, array);
    }

    #[simd_test(enable = "f16c")]
    unsafe fn test_mm256_cvtph_ps() {
        let array = [1_f32, 2_f32, 3_f32, 4_f32, 5_f32, 6_f32, 7_f32, 8_f32];
        let float_vec: __m256 = transmute(array);
        let halfs: __m128i = _mm256_cvtps_ph::<0>(float_vec);
        let floats: __m256 = _mm256_cvtph_ps(halfs);
        let result: [f32; 8] = transmute(floats);
        assert_eq!(result, array);
    }
}