Trait core::iter::DoubleEndedIterator1.0.0[][src]

pub trait DoubleEndedIterator: Iterator {
    fn next_back(&mut self) -> Option<Self::Item>;

    fn advance_back_by(&mut self, n: usize) -> Result<(), usize> { ... }
fn nth_back(&mut self, n: usize) -> Option<Self::Item> { ... }
fn try_rfold<B, F, R>(&mut self, init: B, f: F) -> R
    where
        Self: Sized,
        F: FnMut(B, Self::Item) -> R,
        R: Try<Output = B>
, { ... }
fn rfold<B, F>(self, init: B, f: F) -> B
    where
        Self: Sized,
        F: FnMut(B, Self::Item) -> B
, { ... }
fn rfind<P>(&mut self, predicate: P) -> Option<Self::Item>
    where
        Self: Sized,
        P: FnMut(&Self::Item) -> bool
, { ... } }
Expand description

An iterator able to yield elements from both ends.

Something that implements DoubleEndedIterator has one extra capability over something that implements Iterator: the ability to also take Items from the back, as well as the front.

It is important to note that both back and forth work on the same range, and do not cross: iteration is over when they meet in the middle.

In a similar fashion to the Iterator protocol, once a DoubleEndedIterator returns None from a next_back(), calling it again may or may not ever return Some again. next() and next_back() are interchangeable for this purpose.

Examples

Basic usage:

let numbers = vec![1, 2, 3, 4, 5, 6];

let mut iter = numbers.iter();

assert_eq!(Some(&1), iter.next());
assert_eq!(Some(&6), iter.next_back());
assert_eq!(Some(&5), iter.next_back());
assert_eq!(Some(&2), iter.next());
assert_eq!(Some(&3), iter.next());
assert_eq!(Some(&4), iter.next());
assert_eq!(None, iter.next());
assert_eq!(None, iter.next_back());
Run

Required methods

Removes and returns an element from the end of the iterator.

Returns None when there are no more elements.

The trait-level docs contain more details.

Examples

Basic usage:

let numbers = vec![1, 2, 3, 4, 5, 6];

let mut iter = numbers.iter();

assert_eq!(Some(&1), iter.next());
assert_eq!(Some(&6), iter.next_back());
assert_eq!(Some(&5), iter.next_back());
assert_eq!(Some(&2), iter.next());
assert_eq!(Some(&3), iter.next());
assert_eq!(Some(&4), iter.next());
assert_eq!(None, iter.next());
assert_eq!(None, iter.next_back());
Run

Remarks

The elements yielded by DoubleEndedIterator’s methods may differ from the ones yielded by Iterator’s methods:

let vec = vec![(1, 'a'), (1, 'b'), (1, 'c'), (2, 'a'), (2, 'b')];
let uniq_by_fst_comp = || {
    let mut seen = std::collections::HashSet::new();
    vec.iter().copied().filter(move |x| seen.insert(x.0))
};

assert_eq!(uniq_by_fst_comp().last(), Some((2, 'a')));
assert_eq!(uniq_by_fst_comp().next_back(), Some((2, 'b')));

assert_eq!(
    uniq_by_fst_comp().fold(vec![], |mut v, x| {v.push(x); v}),
    vec![(1, 'a'), (2, 'a')]
);
assert_eq!(
    uniq_by_fst_comp().rfold(vec![], |mut v, x| {v.push(x); v}),
    vec![(2, 'b'), (1, 'c')]
);
Run

Provided methods

🔬 This is a nightly-only experimental API. (iter_advance_by #77404)

recently added

Advances the iterator from the back by n elements.

advance_back_by is the reverse version of advance_by. This method will eagerly skip n elements starting from the back by calling next_back up to n times until None is encountered.

advance_back_by(n) will return Ok(()) if the iterator successfully advances by n elements, or Err(k) if None is encountered, where k is the number of elements the iterator is advanced by before running out of elements (i.e. the length of the iterator). Note that k is always less than n.

Calling advance_back_by(0) does not consume any elements and always returns Ok(()).

Examples

Basic usage:

#![feature(iter_advance_by)]

let a = [3, 4, 5, 6];
let mut iter = a.iter();

assert_eq!(iter.advance_back_by(2), Ok(()));
assert_eq!(iter.next_back(), Some(&4));
assert_eq!(iter.advance_back_by(0), Ok(()));
assert_eq!(iter.advance_back_by(100), Err(1)); // only `&3` was skipped
Run

Returns the nth element from the end of the iterator.

This is essentially the reversed version of Iterator::nth(). Although like most indexing operations, the count starts from zero, so nth_back(0) returns the first value from the end, nth_back(1) the second, and so on.

Note that all elements between the end and the returned element will be consumed, including the returned element. This also means that calling nth_back(0) multiple times on the same iterator will return different elements.

nth_back() will return None if n is greater than or equal to the length of the iterator.

Examples

Basic usage:

let a = [1, 2, 3];
assert_eq!(a.iter().nth_back(2), Some(&1));
Run

Calling nth_back() multiple times doesn’t rewind the iterator:

let a = [1, 2, 3];

let mut iter = a.iter();

assert_eq!(iter.nth_back(1), Some(&2));
assert_eq!(iter.nth_back(1), None);
Run

Returning None if there are less than n + 1 elements:

let a = [1, 2, 3];
assert_eq!(a.iter().nth_back(10), None);
Run

This is the reverse version of Iterator::try_fold(): it takes elements starting from the back of the iterator.

Examples

Basic usage:

let a = ["1", "2", "3"];
let sum = a.iter()
    .map(|&s| s.parse::<i32>())
    .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y)));
assert_eq!(sum, Ok(6));
Run

Short-circuiting:

let a = ["1", "rust", "3"];
let mut it = a.iter();
let sum = it
    .by_ref()
    .map(|&s| s.parse::<i32>())
    .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y)));
assert!(sum.is_err());

// Because it short-circuited, the remaining elements are still
// available through the iterator.
assert_eq!(it.next_back(), Some(&"1"));
Run

An iterator method that reduces the iterator’s elements to a single, final value, starting from the back.

This is the reverse version of Iterator::fold(): it takes elements starting from the back of the iterator.

rfold() takes two arguments: an initial value, and a closure with two arguments: an ‘accumulator’, and an element. The closure returns the value that the accumulator should have for the next iteration.

The initial value is the value the accumulator will have on the first call.

After applying this closure to every element of the iterator, rfold() returns the accumulator.

This operation is sometimes called ‘reduce’ or ‘inject’.

Folding is useful whenever you have a collection of something, and want to produce a single value from it.

Note: rfold() combines elements in a right-associative fashion. For associative operators like +, the order the elements are combined in is not important, but for non-associative operators like - the order will affect the final result. For a left-associative version of rfold(), see Iterator::fold().

Examples

Basic usage:

let a = [1, 2, 3];

// the sum of all of the elements of a
let sum = a.iter()
           .rfold(0, |acc, &x| acc + x);

assert_eq!(sum, 6);
Run

This example demonstrates the right-associative nature of rfold(): it builds a string, starting with an initial value and continuing with each element from the back until the front:

let numbers = [1, 2, 3, 4, 5];

let zero = "0".to_string();

let result = numbers.iter().rfold(zero, |acc, &x| {
    format!("({} + {})", x, acc)
});

assert_eq!(result, "(1 + (2 + (3 + (4 + (5 + 0)))))");
Run

Searches for an element of an iterator from the back that satisfies a predicate.

rfind() takes a closure that returns true or false. It applies this closure to each element of the iterator, starting at the end, and if any of them return true, then rfind() returns Some(element). If they all return false, it returns None.

rfind() is short-circuiting; in other words, it will stop processing as soon as the closure returns true.

Because rfind() takes a reference, and many iterators iterate over references, this leads to a possibly confusing situation where the argument is a double reference. You can see this effect in the examples below, with &&x.

Examples

Basic usage:

let a = [1, 2, 3];

assert_eq!(a.iter().rfind(|&&x| x == 2), Some(&2));

assert_eq!(a.iter().rfind(|&&x| x == 5), None);
Run

Stopping at the first true:

let a = [1, 2, 3];

let mut iter = a.iter();

assert_eq!(iter.rfind(|&&x| x == 2), Some(&2));

// we can still use `iter`, as there are more elements.
assert_eq!(iter.next_back(), Some(&1));
Run

Implementors